Primes Differing by a Fixed Integer

By W. G. Leavitt and Albert A. Mullin

Abstract. It is shown that the equation $(*) (n - 1)^2 - \sigma(n)\phi(n) = m^2$ is always solvable by $n = p_1 p_2$ where p_1, p_2 are primes differing by the integer *m*. This is called the "Standard" solution of (*) and an *m* for which this is the only solution is called a "*-number". While there are an infinite number of non *-numbers there are many (almost certainly infinitely many) *-numbers, including m = 2 (the twin prime case). A procedure for calculating all non *-numbers less than a given bound *L* is devised and a table is given for L = 1000.

The prime numbers p_1 , p_2 are said to form a pair of "twin primes" if $p_1 - p_2 = 2$. Using $\sigma(n)$, the sum of the divisors of *n* (including *n* itself), and $\phi(n)$, the number of numbers less than *n* and relatively prime to *n*, S. A. Sergusov [1] has recently announced two criteria for an integer to be the product of twin primes. They are: *n* is the product of twin primes if and only if either $\sigma(n) = n + 1 + 2\sqrt{n+1}$ or $\phi(n) = n + 1 - 2\sqrt{n+1}$. Combining these two results gives the sufficiency for:

THEOREM 1. The integer n is the product of twin primes if and only if

(1)
$$(n-1)^2 - \sigma(n)\phi(n) = 4.$$

Proof of the Necessity. For primes $p_1 < p_2 < \cdots < p_k$, suppose (1) is satisfied when $n = \prod_{i=1}^{k} p_i^{n_i}$. Then (1) can be written

(2)
$$2\prod_{1}^{k} p_{i}^{n_{i}} + 3 = \prod_{1}^{k} p_{i}^{2n_{i}} - \prod_{1}^{k} \left(p_{i}^{2n_{i}} - p_{i}^{n_{i}-1} \right).$$

Since (2) would reduce for k = 1 to $2p^n + 3 = p^{n-1}$, it is clear that $k \ge 2$. Then note that if $p_1 = 2$, the left side of (2) is odd whereas the right side is even, and so $p_1 \ge 3$. Also from (2) it follows that if $p_1 = 3$, then $n_1 = 2$ or 1, and in all other cases $n_i = 1$.

Now if $k \ge 3$, it is easy to show that the right-hand side of (2) is greater than $p_3 \prod_{i=1}^{k} p_i^{n_i}$ and so exceeds the left-hand side, and if k = 2 with $p_1 = 3$ and $n_1 = 2$, the right side is $3p_2^2 + 78$ which again is always greater than the left-hand side.

In the only remaining case k = 2 and $n_1 = n_2 = 1$, so (2) reduces to $2p_1p_2 + 3 = p_1^2 + p_2^2 - 1$, that is $(p_1 - p_2)^2 = 4$, and we conclude that $n = p_1p_2$ with $p_1 - p_2 = 2$.

We now generalize (1) to

(*)
$$(n-1)^2 - \sigma(n)\phi(n) = m^2$$

for any integer *m*. It is easy to check that

THEOREM 2. If $n = p_1 p_2$ with p_1, p_2 primes such that $p_1 - p_2 = m$, then n satisfies (*).

Received December 4, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10B99; Secondary 10A99.

^{© 1981} American Mathematical Society 0025-5718/81/0000-0173/\$02.25

We will call the n of Theorem 2 the *standard* solution of (*), and we will say that m is a *-number if (*) has only the standard solution, that is if (*) characterizes those n which are products of two primes differing by the fixed integer m. Thus Theorem 1 states that 2 is a *-number.

THEOREM 3. For a given prime p, if 2p - 1 is also prime, then $n = p^k(2p - 1)$ satisfies (*) for $m = p^k - 1$, so $m = p^k - 1$ is not a *-number for all $k \ge 2$. Similarly (*) has a solution $n = p^k(2p + 1)$ for $m = p^k + 1$ whenever p and 2p + 1are prime.

Proof. If $2p \pm 1$ is prime, then for $n = p^{k}(2p \pm 1)$ the left-hand side of (*) becomes

$$(p^{k}(2p \pm 1) - 1)^{2} - (p^{2k} - p^{k-1})(4p^{2} \pm 4p) = (p^{k} \pm 1)^{2}.$$

COROLLARY. There are an infinite number of odd non *-numbers and an infinite number of even non *-numbers.

Proof. This is clear since we have as non *-numbers $2^{k} - 1$ and $2^{k} + 1$, and also $3^{k} - 1$ and $3^{k} + 1$ for all $k \ge 2$. Note: There are many other sequences of non *-numbers such as $7^{k} - 1$ or $11^{k} + 1$. Also note that except for 2 and 3 it is impossible for both 2p - 1 and 2p + 1 to be prime.

For primes $p_1 < p_2 < \cdots < p_k$ let

(3)
$$f = \left(\prod_{1}^{k} p_{i}^{n} - 1\right)^{2} - \prod_{1}^{k} \left(p_{i}^{2n_{i}} - p_{i}^{n_{i}-1}\right),$$

so that $n = \prod_{i=1}^{k} p_i^n$ is a solution of (*) if and only if $\sqrt{f} = m$ is an integer.

The next two propositions gave some limitations on the type of solutions that (*) may have.

PROPOSITION 1. If p is a prime such that $p \nmid m$ then the Mersenne number $M_p = 2^p - 1$ is not a solution of (*).

Proof. Let $n = M_p$ be a solution of (*). For a prime $q \mid M_p$, we have $2^p \equiv 1 \pmod{q}$ so $q \equiv 1 \pmod{p}$. But then any $q^{2r} - q^{r-1} \equiv 0 \pmod{p}$ and also $M_p - 1 \equiv 0 \pmod{p}$. Thus from (3) we have the contradiction $p^2 \mid f$.

PROPOSITION 2. If p < q are primes, then $n = pq^r$ is not a solution of (*) for any $r \ge 2$ and any m.

Proof. If $n = pq^r$ is a solution of (*), then since $r \ge 2$ we have (q, m) = 1. Thus we can write $m = q^t h \pm \alpha$ for either h = 0 or (h, q) = 1 with some t < 1, and some $0 < \alpha \le (q - 1)/2$. Thus $\alpha^2 \equiv 1 \pmod{q}$, so $\alpha^2 = 1$ and (3) becomes

(4)
$$q^{2r} - 2pq^{r} + (p^{2} - 1)q^{r-1} = q^{t}h(q^{t}h \pm 2).$$

Case 1. p = 2, q = 3. Then, since $p^2 - 1 = 3$, it follows from (4) that t = r + 1. Thus (4) reduces to

$$3^{r+1}h^2 \pm 2h - 3^{r-1} + 1 = 0.$$

But the left side of this equation is positive for all $h \ge 1$ and is nonzero for h = 0. Thus no integral value of h satisfies (4), so m an integer is impossible.

582

Case 2. In all other cases, since q > p, we have $q \nmid (p^2 - 1)$ and so t = r - 1. Thus (4) becomes

$$q^{r-1}h^2 \pm 2h - q^{r+1} + 2pq + 1 - p^2 = 0.$$

Writing the left side of this equation F(h) we have, $F(0) \neq 0$, and clearly F(h) is an increasing function for all $h \ge 1$. Since q > p, it is evident that F(q) > 0. But also

$$F(q-1) \leq q^{r-1}(q-1)^2 + 2(q-1) - q^{r+1} + 2pq + 1 - p^2$$

$$\leq q^{r-1}(3-2q) + p(2q-p) - 1$$

$$< q^{r-1}(3-2q+2q-p) - 1 = q^{r-1}(3-p) - 1 < 0.$$

Thus F(h) has no integral zeros, so again m an integer is impossible.

Remark. The method of Theorem 1 can be used to show that, for certain values of m, (*) has only the standard solution, so that m is a *-number. However, with increasing m the method rapidly becomes more complicated and must in any case be done one m at a time. The following propositions yield a much simpler method, namely that for any chosen limit L there is a systematic procedure by which all nonstandard solutions of (*) can be calculated for all $m \leq L$. Eliminating all such m then leaves those *-numbers that are $\leq L$.

The following are clear from (3).

- **PROPOSITION 3.** If k = 1, then f < 0 so (*) is impossible.
- **PROPOSITION 4.** If $k \ge 2$, then f is odd if and only if n is even.

PROPOSITION 5. In all cases f is an increasing function of n_i for all j.

Proof. We take the partial of f with respect to n_j and check directly in the case $j = 1, k = 2, n_2 = 1$ that the partial derivative is greater than $p_1^{n_1-1} \log p_1 (p_1 - p_2)^2$. In all other cases we examine the effect on the partial of replacing $p_i^{2n_i} - p_i^{n_i-1}$ by $p_i^{2n_i}$ for all $i \ge 2$ and (when $j \ge 2$) replacing $2p_j^{2n_j} - p_j^{n_j-1}$ by $2p_j^{2n_j}$. It is then immediately clear that in all cases the partial derivative is positive.

PROPOSITION 6. In the case k = 2 and $n_1 = 1$, f is a decreasing function of p_1 but is an increasing function of p_2 . In all other cases f is an increasing function of p_i for all j.

Proof. When k = 2 and $n_1 = 1$, we find that the partial derivative $f_{p_1} = 2p_2^{n_2-1}(p_1 - p_2) < 0$. To show that all other partials are positive we examine (for the cases $k \ge 3$ or k = 2 and $j \ge 2$) the effect of replacing in f_{p_j} the term $2n_j p_j^{2n_j-1} - (n_j - 1)p_j^{n_j-2}$ by $2n_j p_j^{2n_j-1}$ and replacing $p_i^{2n_i} - p_i^{n-1}$ by $p_i^{2n_i}$ for all $i \ge 2$ when $j \ge 2$, and for all $i \ge 3$ when j = 1 and $k \ge 3$. Finally in the case k = 2, $n_1 \ge 2$ we show directly that

$$f_{p_1} \ge p_1^{n_1-2}p_2^{n_2-1} \left[4p_1^3 + p_2^2 - 4p_1p_2 \right] \ge p_1^{n_1-2}p_2^{n_2-1}(2p_1 - p_2)^2.$$

PROPOSITION 7. f increases with k in the sense that if p is a prime not dividing a then $f(ap^h) > f(a)$ for all $h \ge 1$.

Proof. Let $b = \sigma(a)\phi(a)$. Then

$$f(ap^{h}) = (ap^{h} - 1)^{2} - b(p^{2h} - p^{h-1}) > p^{2h}f(a).$$

The Computations. In calculating nonstandard solutions $n = \prod^k p_i^{n_i}$ of (*) it follows from Propositions 3 and 4 that $k \ge 2$ and if k = 2 we do not need to consider the case $n_1 = 1$. Therefore from Propositions 5-7, we can regard f as always an increasing function in all variables. Thus, for any upper limit L, there is clearly a systematic way of calculating for all $\sqrt{f} \le L$, namely for each increasing k (starting with k = 2) and each increasing choice of the n_i (starting with $n_1 = 2$ and $n_2 = 1$) we calculate for all $p_1 < p_2 < \cdots < p_k$ in each case up until $\sqrt{f} > L$, recording all those n in which $m = \sqrt{f}$ is an integer.

Note that in the following table we have separated the solutions for odd and even m since the odd m appear to have somewhat different properties. In fact, to say m is an odd *-number is simply to say that m + 2 is prime and (*) has the sole solution n = 2(m + 2) or that (*) has no solutions at all.

The following is the set of all nonstandard solutions of (*) for $m \leq 1000$. Note that the solutions marked # are those guaranteed by Theorem 3.

r		· /			rr		
m	n	m	n	m	n	m	n
3	2 ² .3 #	37	2 ² .3 ³	163	2 ³ .3 ⁴	511	2 ⁹ .3 #
5	2 ² .5 #	49	2 ³ .5 ²	179	2.3 ² .19	513	2 ⁹ .5 #
7	2 ³ .3 #	55	2 ³ .3 ³	185	2 ³ .3.19	577	2.3 ² .61
9	2 ³ .5 #	61	2 ² .3.11	249	2 ³ .5 ³	639	2.5.112
13	2 ² .11	63	2 ⁶ .3 #	255	2 ⁸ .3 #	739	2 ² .3.131
15	2 ⁴ .3 #	65	2 ⁶ .5 #	257	2 ⁸ .5 #	813	2.7.113
17	2 ⁴ .5 #	99	2.5.19	303	2 ⁴ .109	877	2.13.67
19	2 ³ .3 ²	127	2 ⁷ .3 #	321	2.5.61	897	2 ⁷ .113
23	2 ³ .13	129	2 ⁷ .5 #	357	2 ² .13.19	921	2 ³ .5.73
23	2.3.7	145	2 ⁴ .53	413	2 ² .3 ² .29	955	2 ² .3 ² .67
31	2 ⁵ .3 #	157	2 ² .113	437	2 ² .311	993	2 ⁵ .7.23
33	2 ⁵ .5 #	159	2 ⁵ .41	487	2 ³ .3 ⁵		
	1 1		1 1	1	1 1	1	

ODD

Note. The only values of $m \leq 5000$ for which (*) has a solution with k = 4 are:

т	n
1744	3.5.7.41
3216	5.11.13.19
4516	3.5.19.41

585

m	n	m	n	m	n	m	n
8	3 ² .5 #	172	3 ² .7.11	414	5 ² .7.13	694	3.5.11 ²
10	3 ² .7 #	176	3.5.31	432	7.17.23	708	7.23.29
26	5 ² .11 #	226	5 ³ .43	438	19 ² .79	728	3 ⁶ .5 #
26	3 ³ .5 #	228	7.11.17	440	3 ² .257	730	3 ⁶ .7 #
28	3 ³ .7 #	230	11 ² .71	440	7 ³ .47	732	17 ² .181
40	3.5.7	240	5.13.17	450	5.7.53	744	13.19.31
46	5 ² .23	242	3 ⁴ .47	456	5.19.23	760	3.7.101
48	7 ² .13 #	242	3 ⁵ .5 #	472	11 ² .149	762	11.17.37
62	7 ² .23	244	3 ⁵ .7 #	476	5 ³ .97	796	3.5.139
78	7 ² .31	246	5.7.29	510	7 ² .199	804	5.11.67
80	3 ⁴ .5 #	258	7 ² .103	516	5.11.43	824	11 ² .257
82	3 ³ .29	288	7.13.19	530	23 ² .47 #	842	29 ² .59 #
82	3 ⁴ .7 #	296	5 ² .137	530	3 ² .5.43	844	5.19.43
96	5.7.11	320	11 ² .101	540	7 ³ .67	870	11 ² .271
118	3 ² .71	328	3.17.19	620	3 ³ .11.13	904	3.29.31
122	11 ² .23 #	342	7 ² .11 ²	626	5 ⁴ .11 #	926	5 ² .419
126	5 ³ .11 #	342	7 ³ .13 #	648	13.17.29	926	3 ² .5 ² .19
142	3.7.19	354	5 ² .163	660	11.19.29	932	7 ³ .131
144	11 ² .37	358	17 ² .71	662	13 ² .191	960	31 ² .61 #
148	3.11.13	360	19 ² .37 #	690	13 ² .199	990	23 ² .199
166	11 ² .47	408	11.13.23	692	7.13.47	1000	3 ³ .7.29
			1		[

EVEN

Department of Mathematics and Statistics University of Nebraska Lincoln, Nebraska 68488

475-B Cook Drive Redstone Arsenal, Alabama 35808

1. S. A. SERGUSOV, "On the problem of prime-twins," Jaroslav. Gos. Ped. Inst. Učen. Zap. Vyp. 82, Anal. i Algebra, 1971, pp. 85-86. (Russian)