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Primes Differing by a Fixed Integer 

By W. G. Leavitt and Albert A. Mullin 

Abtract. It is shown that the equation (*) (n - 1)2 - u(n)+(n) = m2 is always solvable by 
n PI P2 where Pi, P2 are primes differing by the integer m. This is called the "Standard" 
solution of (*) and an m for which this is the only solution is called a "-number". While 
there are an infinite number of non *-numbers there are many (almost certainly infinitely 
many) *-numbers, including m = 2 (the twin prime case). A procedure for calculating all 
non *-numbers less than a given bound L is devised and a table is given for L = 1000. 

The prime numbers pi, P2 are said to form a pair of "twin primes" if PI - P2 = 2. 
Using a(n), the sum of the divisors of n (including n itself), and +(n), the number of 
numbers less than n and relatively prime to n, S. A. Sergusov [1] has recently 
announced two criteria for an integer to be the product of twin primes. They are: n 
is the product of twin primes if and only if either a(n) = n + 1 + 2 n + 1 or 
+(n) = n + 1 - 2 n + 1 . Combining these two results gives the sufficiency for: 

THEOREM 1. The integer n is the product of twin primes if and only if 

(1) (n - 1)2 - a(n)o(n) = 4. 

Proof of the Necessity. For primes p1 <P2 < . . . <Pk, suppose (1) is satisfied 
when n = Ilk p7". Then (1) can be written 

k k k 

(2) 2llp,:+3 =3 p,27; l (p 2,- p -l). 
1 1 1 

Since (2) would reduce for k = I to 2pn +3= pn',it is clear that k >2. Then 
note that if P, = 2, the left side of (2) is odd whereas the right side is even, and so 

P, > 3. Also from (2) it follows that if p1 = 3, then n, = 2 or 1, and in all other 
cases ni = 1. 

Now if k > 3, it is easy to show that the right-hand side of (2) is greater than 
p3lk p/', and so exceeds the left-hand side, and if k = 2 withPi = 3 and n1 = 2, the 
right side is 3p2 + 78 which again is always greater than the left-hand side. 

In the only remaining case k = 2 and n, = n2 = 1, so (2) reduces to 2pIp2 + 3 
P2 + p 2 -1, that is (P1- P2)2 = 4, and we conclude that n = P1p2 with p -P2 

-2. 
We now generalize (1) to 

(*) (n - 1)2 - a(n)+(n) = M2 

for any integer m. It is easy to check that 

THEOREM 2. If n = P1P2 with P1, P2 primes such that p1 - P2 = m, then n satisfies 
( *)A 
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We will call the n of Theorem 2 the standard solution of (*), and we will say that 
m is a *-number if (*) has only the standard solution, that is if (*) characterizes 
those n which are products of two primes differing by the fixed integer m. Thus 
Theorem 1 states that 2 is a *-number. 

THEOREM 3. For a given prime p, if 2p - 1 is also prime, then n = p k(2p - 1) 

satisfies (*)for m = pk _ 1, So m =pk -1 is not a *-number for all k > 2. 
Similarly (*) has a solution n = pk(2p + 1) for m = pk + 1 whenever p and 2p + 1 
are prime. 

Proof. If 2p ? I is prime, then for n = pk(2p ? 1) the left-hand side of (*) 
becomes 

(p k(2p + 1) - 1)2 _ (p2k - pk-1)(4p2 ? 4p) = ( k ? 1)2. 

COROLLARY. There are an infinite number of odd non *-numbers and an infinite 
number of even non *-numbers. 

Proof. This is clear since we have as non *-numbers 2k _ 1 and 2k + 1, and also 
3k _ 1 and 3k + 1 for all k > 2. Note: There are many other sequences of non 
*-numbers such as 7k- 1 or 1lk + 1. Also note that except for 2 and 3 it is 
impossible for both 2p - 1 and 2p + 1 to be prime. 

For primespI < P2 < ... < pk let 

k 2 k 

(3) f= ( pin - I) - f(pi2fi_ pi --l) 

so that n = H1k p;% is a solution of (*) if and only if V9f = m is an integer. 
The next two propositions gave some limitations on the type of solutions that (*) 

may have. 

PROPOSITION 1. If p is a prime such that p I m then the Mersenne number 

Mp = 2P - 1 is not a solution of (*). 

Proof. Let n = Mp be a solution of (*). For a prime q I Mp, we have 2P _ 1 
(mod q) so q 1 (modp). But then any q2r - qr-1 _ 0 (modp) and also Mp - 1 

0 (modp). Thus from (3) we have the contradiction p2 f. 

PROPOSITION 2. If p < q are primes, then n = pq r is not a solution of (*) for any 
r > 2 and any m. 

Proof. If n = pqr is a solution of (*), then since r > 2 we have (q, m) = 1. Thus 
we can write m = qth ? a for either h = 0 or (h, q) = 1 with some t < 1, and 
some 0 < a < (q - 1)/2. Thus a 2 1_ (mod q), so a2 = 1 and (3) becomes 

(4) q2r - 2pqr + (p2 _ I)qr-l = qth(q'h ? 2). 

Case 1. p = 2, q = 3. Then, sincep2 -21 = 3, it follows from (4) that t = r + 1. 
Thus (4) reduces to 

3r+Ih2 + 2h - 3r-I + 1 = 0. 

But the left side of this equation is positive for all h > 1 and is nonzero for h = 0. 
Thus no integral value of h satisfies (4), so m an integer is impossible. 
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Case 2. In all other cases, since q > p, we have q (p2 - 1) and so t = r - 1. 
Thus (4) becomes 

qr-lh2 ? 2h-q r+ + 2pq + 1 _p2 = 0. 

Writing the left side of this equation F(h) we have, F(O) # 0, and clearly F(h) is an 
increasing function for all h > 1. Since q > p, it is evident that F(q) > 0. But also 

F(q- 1) < qr-l(q - 1)2 + 2(q - 1)- qr+l + 2pq + 1 p2 

< qr-I(3 - 2q) + p(2q -p) - 1 

< q r(3 - 2q + 2q -p) - 1 = qr-l(3 -_p) - 1 < 0. 

Thus F(h) has no integral zeros, so again m an integer is impossible. 
Remark. The method of Theorem 1 can be used to show that, for certain values 

of m, (*) has only the standard solution, so that m is a *-number. However, with 
increasing m the method rapidly becomes more complicated and must in any case 
be done one m at a time. The following propositions yield a much simpler method, 
namely that for any chosen limit L there is a systematic procedure by which all 
nonstandard solutions of (*) can be calculated for all m < L. Eliminating all such 
m then leaves those *-numbers that are < L. 

The following are clear from (3). 

PROPOSITION 3. If k = 1, then f < 0 so (*) is impossible. 

PROPOSITION 4. If k > 2, then f is odd if and only if n is even. 

PROPOSITION 5. In all cases f is an increasing function of nj for all j. 

Proof. We take the partial of f with respect to nj and check directly in the case 
j = 1, k = 2, n2 = I that the partial derivative is greater than pn 1-logpl(p1 - p2)2. 

In all other cases we examine the effect on the partial of replacing pi2 / _ p,1- 1 by 
Pi for all i > 2 and (when j > 2) replacing 2pjln5 - pj -' by 2p 5. It is then 
immediately clear that in all cases the partial derivative is positive. 

PROPOSITION 6. In the case k = 2 and nI = 1, f is a decreasing function of p1 but is 
an increasing function of P2. In all other cases f is an increasing function of pj for allj. 

Proof. When k = 2 and n1 = 1, we find that the partial derivative fp, = 

2pn2- (PI - P2) < 0. To show that all other partials are positive we examine 
(for the cases k > 3 or k = 2 and j > 2) the effect of replacing in fp4 the term 
2 njp2n- (n - l)p12 by 2njpJ'V 

1 and replacingpf2 - pi-l byppi for all i > 2 
when j > 2, and for all i > 3 when j = 1 and k > 3. Finally in the case k = 2, 
n, > 2 we show directly that 

fp >p 1 2 [4p1 +P2 
- 

4P1P2] >p1 22 (2p1 P2)2. 

PROPOSITION 7. f increases with k in the sense that if p is a prime not dividing a 
then f(apa) > f(a) for all h > 1. 

Proof. Let b = a(a)+(a). Then 

f(aph) = (aph _ 1)2 - b(p2h - ph-1) >p2hf(a). 
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The Computations. In calculating nonstandard solutions n = 11kp,' of (*) it 
follows from Propositions 3 and 4 that k > 2 and if k = 2 we do not need to 
consider the case n1 = 1. Therefore from Propositions 5-7, we can regard f as 
always an increasing function in all variables. Thus, for any upper limit L, there is 
clearly a systematic way of calculating for all \Ff < L, namely for each increasing 
k (starting with k = 2) and each increasing choice of the ni (starting with n1 = 2 
and n2 = 1) we calculate for all p1 <P2 < ... <Pk in each case up until Vf? > 
L, recording all those n in which m = Vf is an integer. 

Note that in the following table we have separated the solutions for odd and 
even m since the odd m appear to have somewhat different properties. In fact, to 
say m is an odd *-number is simply to say that m + 2 is prime and (*) has the sole 
solution n = 2(m + 2) or that (*) has no solutions at all. 

Tlhe following is the set of all nonstandard solutions of (*) for m < 1000. Note 
that the solutions marked # are those guaranteed by Theorem 3. 

ODD 

m n m n m n m n 

3 2 2.3 # 37 22.33 163 23 .34 511 29 .3 # 

5 2 2.5 # 49 23 2 179 2.3 2.19 513 2 .5 # 

7 2 3.3 # 55 2. 3 185 2. 3.19 577 2.3 2.61 

9 2 3.5 61 2 3.11 249 2 .5 639 2.5.11 

13 2 2.11 63 26.3 255 28.3 3739 22. 3131 

15 2 .3 # 65 26.5 # 257 28.5 # 813 2.7.113 

17 2 .5 # 99 2.5.19 303 2 109 877 2.13.67 

19 23 32 127 27 .3 # 321 2.5.61 897 27 .113 

23 2 .13 129 2 .5 # 357 2 13.19 921 2. 5.73 

23 2.3.7 1L45 .24.53 413 22.3 29 955 22.32.67 

31 2 5.3 # 157 2 .113 437 2 .311 993 25. 7.23 

33 2 .5 # 159 25.-41 487 23.3l 

Note. The only values of m < 5000 for which (*) has a solution with k = 4 are: 

m n 
1744 3.5.7.41 
3216 5.11.13.19 
4516 3.5.19.41 
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EVEN 

m n m n m n m n 

8 32.5 172 32.7.11 1414 52.7.13 694 3.5.112 

10 3 .7 # 176 3.5.31 432 7.17.23 708 7.23.29 

26 52.11 # 226 5343 438 19 79 728 36.5 # 

3 2 6 26 33. # 228 7.11.17 1440 3 .257 730 36.7 # 

37 20 12 ~ 3 72 12 28 37 230 11 .71 440 7 .47 732 17 .181 

40 3.5.7 240 5.13.17 450 5.7.53 744 13.19.31 

52 14 46 52.23 242 3 .47 456 5.19.23 760 3.7.101 

72 5 2 48 7 .13 # 242 3 .5 # 472 11 .149 762 11.17.37 

72 5 3 62 72.23 244 3 .7 # 476 5 .97 796 3.5.139 

72 2 78 72.31 246 5.7.29 510 7 .199 804 5.11.67 

345 722 80 3.5 # 258 7.103 516 5.11.43 824 112.257 

3 2 2 82 3 .29 288 7.13.19 530 23 .47 # 842 29 .59 # 

82 34c7 296 5 .137 530 3 .5.43 844 5.19.43 

2 3~7 7 12 96 5.7.11 320 11 .101 540 7 .67 870 11 .271 

23 118 3 .71 328 3.17.19 620 3 .11.13 904 3.29.31 

2 2 2 14 2 122 11 .23 # 342 7 .11 626 5 .11 # 926 5 .419 

126 5 . 11 # 342 7 .13 648 13.17.29 926 3 .5 .19 

2 3 142 3.7.19 354 5 .163 660 11.19.29 932 7 .131 

2 2 2 92 144 11 .37 358 17 .71 662 13 .191 960 31' .61 # 

2 2 2 148 3.11.13 360 19 37 690 13 .199 990 23 .199 

23 166 11 .47 1408 11.13.23 692 7.13.47 1000 3 .7.29 
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