Primes Differing by a Fixed Integer

By W. G. Leavitt and Albert A. Mullin

Abstract

It is shown that the equation (*) $(n-1)^{2}-\sigma(n) \phi(n)=m^{2}$ is always solvable by $n=p_{1} p_{2}$ where p_{1}, p_{2} are primes differing by the integer m. This is called the "Standard" solution of (*) and an m for which this is the only solution is called a "*-number". While there are an infinite number of non *-numbers there are many (almost certainly infinitely many) *-numbers, including $m=2$ (the twin prime case). A procedure for calculating all non *-numbers less than a given bound L is devised and a table is given for $L=1000$.

The prime numbers p_{1}, p_{2} are said to form a pair of "twin primes" if $p_{1}-p_{2}=2$. Using $\sigma(n)$, the sum of the divisors of n (including n itself), and $\phi(n)$, the number of numbers less than n and relatively prime to n, S. A. Sergusov [1] has recently announced two criteria for an integer to be the product of twin primes. They are: n is the product of twin primes if and only if either $\sigma(n)=n+1+2 \sqrt{n+1}$ or $\phi(n)=n+1-2 \sqrt{n+1}$. Combining these two results gives the sufficiency for:

Theorem 1. The integer n is the product of twin primes if and only if

$$
\begin{equation*}
(n-1)^{2}-\sigma(n) \phi(n)=4 \tag{1}
\end{equation*}
$$

Proof of the Necessity. For primes $p_{1}<p_{2}<\cdots<p_{k}$, suppose (1) is satisfied when $n=\Pi_{1}^{k} p_{i}^{n_{i}}$. Then (1) can be written

$$
\begin{equation*}
2 \prod_{1}^{k} p_{i}^{n_{i}}+3=\prod_{1}^{k} p_{i}^{2 n_{i}}-\prod_{1}^{k}\left(p_{i}^{2 n_{i}}-p_{i}^{n_{i}-1}\right) . \tag{2}
\end{equation*}
$$

Since (2) would reduce for $k=1$ to $2 p^{n}+3=p^{n-1}$, it is clear that $k \geqslant 2$. Then note that if $p_{1}=2$, the left side of (2) is odd whereas the right side is even, and so $p_{1} \geqslant 3$. Also from (2) it follows that if $p_{1}=3$, then $n_{1}=2$ or 1 , and in all other cases $n_{i}=1$.

Now if $k \geqslant 3$, it is easy to show that the right-hand side of (2) is greater than $p_{3} \Pi_{1}^{k} p_{i}^{n_{i}}$ and so exceeds the left-hand side, and if $k=2$ with $p_{1}=3$ and $n_{1}=2$, the right side is $3 p_{2}^{2}+78$ which again is always greater than the left-hand side.

In the only remaining case $k=2$ and $n_{1}=n_{2}=1$, so (2) reduces to $2 p_{1} p_{2}+3$ $=p_{1}^{2}+p_{2}^{2}-1$, that is $\left(p_{1}-p_{2}\right)^{2}=4$, and we conclude that $n=p_{1} p_{2}$ with $p_{1}-p_{2}$ $=2$.

We now generalize (1) to

$$
\begin{equation*}
(n-1)^{2}-\sigma(n) \phi(n)=m^{2} \tag{*}
\end{equation*}
$$

for any integer m. It is easy to check that
Theorem 2. If $n=p_{1} p_{2}$ with p_{1}, p_{2} primes such that $p_{1}-p_{2}=m$, then n satisfies (*).

[^0]We will call the n of Theorem 2 the standard solution of (*), and we will say that m is a *-number if (*) has only the standard solution, that is if (*) characterizes those n which are products of two primes differing by the fixed integer m. Thus Theorem 1 states that 2 is a *-number.

Theorem 3. For a given prime p, if $2 p-1$ is also prime, then $n=p^{k}(2 p-1)$ satisfies (*) for $m=p^{k}-1$, so $m=p^{k}-1$ is not a *-number for all $k \geqslant 2$. Similarly (*) has a solution $n=p^{k}(2 p+1)$ for $m=p^{k}+1$ whenever p and $2 p+1$ are prime.

Proof. If $2 p \pm 1$ is prime, then for $n=p^{k}(2 p \pm 1)$ the left-hand side of (*) becomes

$$
\left(p^{k}(2 p \pm 1)-1\right)^{2}-\left(p^{2 k}-p^{k-1}\right)\left(4 p^{2} \pm 4 p\right)=\left(p^{k} \pm 1\right)^{2}
$$

Corollary. There are an infinite number of odd non *-numbers and an infinite number of even non *-numbers.

Proof. This is clear since we have as non ${ }^{*}$-numbers $2^{k}-1$ and $2^{k}+1$, and also $3^{k}-1$ and $3^{k}+1$ for all $k \geqslant 2$. Note: There are many other sequences of non ${ }^{*}$-numbers such as $7^{k}-1$ or $11^{k}+1$. Also note that except for 2 and 3 it is impossible for both $2 p-1$ and $2 p+1$ to be prime.

For primes $p_{1}<p_{2}<\cdots<p_{k}$ let

$$
\begin{equation*}
f=\left(\prod_{1}^{k} p_{i}^{n_{2}}-1\right)^{2}-\prod_{1}^{k}\left(p_{i}^{2 n_{i}}-p_{i}^{n_{i}-1}\right) \tag{3}
\end{equation*}
$$

so that $n=\Pi_{1}^{k} p_{i}^{n^{n}}$ is a solution of (*) if and only if $\sqrt{f}=m$ is an integer.
The next two propositions gave some limitations on the type of solutions that (*) may have.

Proposition 1. If p is a prime such that $p \nmid m$ then the Mersenne number $M_{p}=2^{p}-1$ is not a solution of (*).

Proof. Let $n=M_{p}$ be a solution of (*). For a prime $q \mid M_{p}$, we have $2^{p} \equiv 1$ $(\bmod q)$ so $q \equiv 1(\bmod p)$. But then any $q^{2 r}-q^{r-1} \equiv 0(\bmod p)$ and also $M_{p}-1$ $\equiv 0(\bmod p)$. Thus from (3) we have the contradiction $p^{2} \mid f$.

Proposition 2. If $p<q$ are primes, then $n=p q^{r}$ is not a solution of (*) for any $r \geqslant 2$ and any m.

Proof. If $n=p q^{r}$ is a solution of (*), then since $r \geqslant 2$ we have $(q, m)=1$. Thus we can write $m=q^{t} h \pm \alpha$ for either $h=0$ or $(h, q)=1$ with some $t<1$, and some $0<\alpha \leqslant(q-1) / 2$. Thus $\alpha^{2} \equiv 1(\bmod q)$, so $\alpha^{2}=1$ and (3) becomes

$$
\begin{equation*}
q^{2 r}-2 p q^{r}+\left(p^{2}-1\right) q^{r-1}=q^{t} h\left(q^{t} h \pm 2\right) . \tag{4}
\end{equation*}
$$

Case 1. $p=2, q=3$. Then, since $p^{2}-1=3$, it follows from (4) that $t=r+1$. Thus (4) reduces to

$$
3^{r+1} h^{2} \pm 2 h-3^{r-1}+1=0
$$

But the left side of this equation is positive for all $h \geqslant 1$ and is nonzero for $h=0$. Thus no integral value of h satisfies (4), so m an integer is impossible.

Case 2. In all other cases, since $q>p$, we have $q \nmid\left(p^{2}-1\right)$ and so $t=r-1$. Thus (4) becomes

$$
q^{r-1} h^{2} \pm 2 h-q^{r+1}+2 p q+1-p^{2}=0
$$

Writing the left side of this equation $F(h)$ we have, $F(0) \neq 0$, and clearly $F(h)$ is an increasing function for all $h \geqslant 1$. Since $q>p$, it is evident that $F(q)>0$. But also

$$
\begin{aligned}
F(q-1) & \leqslant q^{r-1}(q-1)^{2}+2(q-1)-q^{r+1}+2 p q+1-p^{2} \\
& \leqslant q^{r-1}(3-2 q)+p(2 q-p)-1 \\
& <q^{r-1}(3-2 q+2 q-p)-1=q^{r-1}(3-p)-1<0 .
\end{aligned}
$$

Thus $F(h)$ has no integral zeros, so again m an integer is impossible.
Remark. The method of Theorem 1 can be used to show that, for certain values of $m,(*)$ has only the standard solution, so that m is a *-number. However, with increasing m the method rapidly becomes more complicated and must in any case be done one m at a time. The following propositions yield a much simpler method, namely that for any chosen limit L there is a systematic procedure by which all nonstandard solutions of (*) can be calculated for all $m \leqslant L$. Eliminating all such m then leaves those ${ }^{*}$-numbers that are $\leqslant L$.

The following are clear from (3).
Proposition 3. If $k=1$, then $f<0$ so (*) is impossible.
Proposition 4. If $k \geqslant 2$, then f is odd if and only if n is even.
Proposition 5. In all cases f is an increasing function of n_{j} for all j.
Proof. We take the partial of f with respect to n_{j} and check directly in the case $j=1, k=2, n_{2}=1$ that the partial derivative is greater than $p_{1}^{n_{1}-1} \log p_{1}\left(p_{1}-p_{2}\right)^{2}$. In all other cases we examine the effect on the partial of replacing $p_{i}^{2 n_{i}}-p_{i}^{n_{i}^{-1}}$ by $p_{i}^{2 n_{i}}$ for all $i \geqslant 2$ and (when $j \geqslant 2$) replacing $2 p_{j}^{2 n}-p_{j}^{n_{j}-1}$ by $2 p_{j}^{2 n_{j}}$. It is then immediately clear that in all cases the partial derivative is positive.

Proposition 6. In the case $k=2$ and $n_{1}=1, f$ is a decreasing function of p_{1} but is an increasing function of p_{2}. In all other cases f is an increasing function of p_{j} for all j.

Proof. When $k=2$ and $n_{1}=1$, we find that the partial derivative $f_{p_{1}}=$ $2 p_{2}^{n_{2}-1}\left(p_{1}-p_{2}\right)<0$. To show that all other partials are positive we examine (for the cases $k \geqslant 3$ or $k=2$ and $j \geqslant 2$) the effect of replacing in $f_{p_{j}}$ the term $2 n_{j} p_{j}^{2 n_{j}-1}-\left(n_{j}-1\right) p_{j}^{n_{j}-2}$ by $2 n_{j} p_{j}^{2 n_{j}-1}$ and replacing $p_{i}^{2 n_{i}}-p_{i}^{n-1}$ by $p_{i}^{2 n_{i}}$ for all $i \geqslant 2$ when $j \geqslant 2$, and for all $i \geqslant 3$ when $j=1$ and $k \geqslant 3$. Finally in the case $k=2$, $n_{1} \geqslant 2$ we show directly that

$$
f_{p_{1}} \geqslant p_{1}^{n_{1}-2} p_{2}^{n_{2}-1}\left[4 p_{1}^{3}+p_{2}^{2}-4 p_{1} p_{2}\right]>p_{1}^{n_{1}-2} p_{2}^{n_{2}-1}\left(2 p_{1}-p_{2}\right)^{2} .
$$

Proposition 7. f increases with k in the sense that if p is a prime not dividing a then $f\left(a p^{h}\right)>f(a)$ for all $h \geqslant 1$.

Proof. Let $b=\sigma(a) \phi(a)$. Then

$$
f\left(a p^{h}\right)=\left(a p^{h}-1\right)^{2}-b\left(p^{2 h}-p^{h-1}\right)>p^{2 h} f(a) .
$$

The Computations. In calculating nonstandard solutions $n=\Pi^{k} p_{i}^{n_{1}}$ of (*) it follows from Propositions 3 and 4 that $k \geqslant 2$ and if $k=2$ we do not need to consider the case $n_{1}=1$. Therefore from Propositions 5-7, we can regard f as always an increasing function in all variables. Thus, for any upper limit L, there is clearly a systematic way of calculating for all $\sqrt{f} \leqslant L$, namely for each increasing k (starting with $k=2$) and each increasing choice of the n_{i} (starting with $n_{1}=2$ and $n_{2}=1$) we calculate for all $p_{1}<p_{2}<\cdots<p_{k}$ in each case up until $\sqrt{f}>$ L, recording all those n in which $m=\sqrt{f}$ is an integer.

Note that in the following table we have separated the solutions for odd and even m since the odd m appear to have somewhat different properties. In fact, to say m is an odd *-number is simply to say that $m+2$ is prime and (*) has the sole solution $n=2(m+2)$ or that (*) has no solutions at all.

The following is the set of all nonstandard solutions of (*) for $m \leqslant 1000$. Note that the solutions marked \# are those guaranteed by Theorem 3.

ODD

m	n		m	n	m	n	m	n
3	$2^{2} .3$		37	$2^{2} \cdot 3^{3}$	163	$2^{3} \cdot 3^{4}$	511	$2^{9} \cdot 3$ \#
5	$2^{2} .5$	\#	49	$2^{3} \cdot 5^{2}$	179	$2.3^{2} \cdot 19$	513	$2^{9} .5$ \#
7	$2^{3} .3$	\#	55	$2^{3} \cdot 3^{3}$	185	$2^{3} \cdot 3.19$	577	2.3 ${ }^{2} \cdot 61$
9	$2^{3} .5$	\#	61	2^{2}. 3.11	249	$2^{3} \cdot 5^{3}$	639	$2.5 .11^{2}$
13	$2^{2} .11$		63	2^{6}. 3 \#	255	$2^{8} .3$ \#	739	$2^{2} \cdot 3.131$
15	$2^{4} .3$	\#	65	$2^{6} .5$ \#	257	$2^{8} .5$ \#	813	2.7.113
17	$2^{4} .5$	\#	99	2.5.19	303	$2^{4} .109$	877	2.13 .67
19	$2^{3} \cdot 3^{2}$		127	$2{ }^{7} .3$ \#	321	2.5.61	897	27.113
23	$2^{3} .13$		129	$2^{7} .5$ \#	357	$2^{2} .13 .19$	921	$2^{3} \cdot 5.73$
23	2.3.7		145	$2^{4} .53$	413	$2^{2} \cdot 3^{2} \cdot 29$	955	$2^{2} \cdot 3^{2} .67$
31	2^{5}. 3	\#	157	$2^{2} .113$	437	2^{2}. 311	993	$2^{5} .7 .23$
33	$2^{5} .5$	\#	159	$2^{5} .41$	487	$2^{3} \cdot 3^{5}$		

Note. The only values of $m \leqslant 5000$ for which (*) has a solution with $k=4$ are:

m	n
1744	3.5 .7 .41
3216	5.11 .13 .19
4516	3.5 .19 .41

EVEN

m	n	m	n	m	n	m	n
8	$3^{2} .5$ \#	172	$3^{2} .7 .11$	414	$5^{2} \cdot 7.13$	694	$3.5 .11^{2}$
10	$3^{2} .7$ \#	176	3.5.31	432	7.17.23	708	7.23 .29
26	$5^{2} .11$ \#	226	$5^{3} .43$	438	$19^{2} .79$	728	$3^{6} .5$ \#
26	$3^{3} .5$ \#	228	7.11.17	440	$3^{2} .257$	730	$3^{6} .7$ \#
28	$3^{3} .7$ \#	230	$11^{2} .71$	440	$7^{3} \cdot 47$	732	$17^{2} .181$
40	3.5 .7	240	5.13.17	450	5.7 .53	744	13.19.31
46	$5^{2} .23$	242	$3^{4} .47$	456	5.19 .23	760	3.7.101
48	$7{ }^{2} .13$ \#	242	$3^{5} .5$ \#	472	$11^{2} .149$	762	11.17.37
62	$7^{2} .23$	244	$3^{5} .7$ \#	476	$5^{3} .97$	796	3.5.139
78	$7^{2} .31$	246	5.7 .29	510	$7^{2} .199$	804	5.11 .67
80	$3^{4} .5$ \#	258	$7^{2} .103$	516	5.11 .43	824	$11^{2} .257$
82	$3^{3} .29$	288	7.13.19	530	$23^{2} .47$ \#	842	$29^{2} .59$ \#
82	$3^{4} .7$ \#	296	$5^{2} .137$	530	$3^{2} .5 .43$	844	5.19 .43
96	5.7.11	320	$11^{2} .101$	540	$7^{3} .67$	870	$11^{2} .271$
118	$3^{2} .71$	328	3.17.19	620	$3^{3} .11 .13$	904	3.29 .31
122	$11^{2} .23$ \#	342	$7^{2} \cdot 11^{2}$	626	$5^{4} .11$ \#	926	$5^{2} .419$
126	$5^{3} .11$ \#	342	$7^{3} .13$ \#	648	13.17.29	926	$3^{2} \cdot 5^{2} \cdot 19$
142	3.7.19	354	$5^{2} .163$	660	11.19.29	932	$7^{3} \cdot 131$
144	$11^{2} .37$	358	$17^{2} .71$	662	$13^{2} .191$	960	$31^{2} .61$ \#
148	3.11 .13	360	$19^{2} .37$ \#	690	$13^{2} .199$	990	$23^{2} .199$
166	$11^{2} .47$	408	11.13 .23	692	7.13 .47	1000	$3^{3} .7 .29$

Department of Mathematics and Statistics
University of Nebraska
Lincoln, Nebraska 68488

475-B Cook Drive

Redstone Arsenal, Alabama 35808

1. S. A. Sergusov, "On the problem of prime-twins," Jaroslav. Gos. Ped. Inst. Učen. Zap. Vyp. 82, Anal. i Algebra, 1971, pp. 85-86. (Russian)

[^0]: Received December 4, 1980.
 1980 Mathematics Subject Classification. Primary 10B99; Secondary 10A99.

