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Primes Differing by a Fixed Integer
By W. G. Leavitt and Albert A. Mullin

Abstract. It is shown that the equation (s) (n — 1) — a(n)p(n) = m? is always solvable by
n = p, p, where p,, p, are primes differing by the integer m. This is called the “Standard”
solution of () and an m for which this is the only solution is called a “*-number”. While
there are an infinite number of non *-numbers there are many (almost certainly infinitely
many) *-numbers, including m = 2 (the twin prime case). A procedure for calculating all
non *-numbers less than a given bound L is devised and a table is given for L = 1000.

The prime numbers p,, p, are said to form a pair of “twin primes” if p, — p, = 2.
Using o(n), the sum of the divisors of » (including n itself), and ¢(n), the number of
numbers less than n and relatively prime to n, S. A. Sergusov [1] has recently
announced two criteria for an integer to be the product of twin primes. They are: n
is the product of twin primes if and only if either o(n) = n+1+2Vn+1 or
¢(n)=n+1-2Vn + 1. Combining these two results gives the sufficiency for:

THEOREM 1. The integer n is the product of twin primes if and only if

(1) (n = 1)* = o(n)p(n) = 4.
Proof of the Necessity. For primes p, <p, < - - - < p,, suppose (1) is satisfied

when n = II¥ p/*. Then (1) can be written
K

k k
(2) ZHp,."i+3=Hpi2'h_H (PiZ'li_pim—‘l).
1 1 1

Since (2) would reduce for k = 1 to 2p" + 3 = p"~!, it is clear that k > 2. Then
note that if p, = 2, the left side of (2) is odd whereas the right side is even, and so
p, > 3. Also from (2) it follows that if p, = 3, then n; = 2 or 1, and in all other
cases n; = 1.

Now if k > 3, it is easy to show that the right-hand side of (2) is greater than
P51 p/ and so exceeds the left-hand side, and if k = 2 with p, = 3 and n, = 2, the
right side is 3p? + 78 which again is always greater than the left-hand side.

In the only remaining case k = 2 and n, = n, = 1, so (2) reduces to 2p,p, + 3
= p? + p? — 1, thatis (p, — P,)* = 4, and we conclude that n = pp, withp, — p,
=2

We now generalize (1) to
(*) (n = 1)" = o(n)e(n) = m’

for any integer m. It is easy to check that

THEOREM 2. If n = p, p, with p,, p, primes such that p, — p, = m, then n satisfies

(*)-
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We will call the n of Theorem 2 the standard solution of (), and we will say that
m is a *-number if (x) has only the standard solution, that is if (*) characterizes
those n which are products of two primes differing by the fixed integer m. Thus
Theorem 1 states that 2 is a *-number.

THEOREM 3. For a given prime p, if 2p — 1 is also prime, then n = p*(2p — 1)
satisfies (¥) for m =p* — 1, so m = p* — 1 is not a *-number for all k > 2.
Similarly () has a solution n = p*(2p + 1) for m = p* + 1 whenever p and 2p + 1
are prime.

Proof. If 2p + 1 is prime, then for n = p*(2p + 1) the left-hand side of (»)
becomes

(P*2p = 1) — 1) = (p™ — p*~")(4p* £ 4p) = (p* £ 1)*.

COROLLARY. There are an infinite number of odd non *-numbers and an infinite
number of even non *-numbers.

Proof. This is clear since we have as non *-numbers 2 — 1 and 2* + 1, and also
3* — 1 and 3* + 1 for all kK > 2. Note: There are many other sequences of non
*.numbers such as 7% — 1 or 11¥ + 1. Also note that except for 2 and 3 it is
impossible for both 2p — 1 and 2p + 1 to be prime.

For primesp; <p, < - - - <p;let

k 2 k
3) f= (111 pr— 1) - Ill(p,-z"‘ - prY),

so that n = [I¥ p/ is a solution of (x) if and only if V' f = m s an integer.
The next two propositions gave some limitations on the type of solutions that (x)
may have.

PROPOSITION 1. If p is a prime such that p }m then the Mersenne number
M, =27 — 1 is not a solution of (¥).

Proof. Let n = M, be a solution of (+). For a prime g | M,, we have 27 =1
(mod g) so ¢ = 1 (mod p). But then any ¢ — ¢"~! = 0 (mod p) and also M, -1
= 0 (mod p). Thus from (3) we have the contradiction p? | f.

PROPOSITION 2. If p < q are primes, then n = pq” is not a solution of (x) for any
r > 2 and any m.

Proof. If n = pq” is a solution of (x), then since r > 2 we have (¢, m) = 1. Thus
we can write m = q¢'h = a for either h = 0 or (h, ¢) = 1 with some 7 < 1, and
some 0 < a < (¢ — 1)/2. Thus a® = 1 (mod g), so a*> = 1 and (3) becomes

(4) q” = 2pq" + (P> — 1)g""' = q'h(q'h = 2).
Case 1.p = 2, g = 3. Then, since p> — 1 = 3, it follows from (4) that t = r + 1.
Thus (4) reduces to
32+ 2h -3+ 1=0.
But the left side of this equation is positive for all » > 1 and is nonzero for A = 0.
Thus no integral value of h satisfies (4), so m an integer is impossible.
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Case 2. In all other cases, since ¢ >p, we have ¢} (p> — 1) andso t =r — 1.
Thus (4) becomes

g M x2h— g +2pqg+ 1 - p?=0.

Writing the left side of this equation F(h) we have, F(0) # 0, and clearly F(h) is an
increasing function for all 2 > 1. Since g > p, it is evident that F(g) > 0. But also

Flg=1)<q Mg— 1 +2q—1D)—q™*" +2pg+1-p?
<q¢7'3-29)+p2g—p) -1
<q¢7'3-2q+2q-p)—-1=q""'B-p)—-1<0.

Thus F(h) has no integral zeros, so again m an integer is impossible.

Remark. The method of Theorem 1 can be used to show that, for certain values
of m, (*) has only the standard solution, so that m is a *-number. However, with
increasing m the method rapidly becomes more complicated and must in any case
be done one m at a time. The following propositions yield a much simpler method,
namely that for any chosen limit L there is a systematic procedure by which all
nonstandard solutions of () can be calculated for all m < L. Eliminating all such

m then leaves those *-numbers that are < L.
The following are clear from (3).

ProOPOSITION 3. If k = 1, then f < 0 so (%) is impossible.
PROPOSITION 4. If k > 2, then f is odd if and only if n is even.
PROPOSITION 5. In all cases f is an increasing function of n; for all j.

Proof. We take the partial of f with respect to n; and check directly in the case
J =1,k =2, n, = 1 that the partial derivative is greater than p/" " 'log pl( P — )~
In all other cases we examine the effect on the partial of replacmg p — pri by
p? for all i >2 and (when j > 2) replacing 2p 2'5 - ' by 2pj’5 It is then
1mmed1ate1y clear that in all cases the partial denvatlve 1s positive.

PROPOSITION 6. In the case k = 2 and n, = 1, f is a decreasing function of p, but is
an increasing function of p,. In all other cases f is an increasing function of p; for all j.

Proof. When k =2 and n; =1, we find that the partial derivative f, =
2p»2~Y(p; — p,) < 0. To show that all other partials are positive we examine
(for the cases k > 3 or k =2 and j > 2) the effect of replacing in f the term
2np? ™' — (n, — )p/s~* by 2n,p? " and replacing p?* — p;"~ ' by p}* forall i > 2
when j > 2, and for all / > 3 when j = 1 and k& > 3. Finally in the case k = 2,
n, > 2 we show directly that

5y > P73 [4p] + p — 4pypy] > PP P52, - P

PROPOSITION 7. f increases with k in the sense that if p is a prime not dividing a
then f(ap™) > f(a) for all h > 1

Proof. Let b = o(a)p(a). Then

flap") = (ap* = 1)* = b(p* — p"~") > p™(a).
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The Computations. In calculating nonstandard solutions n = II* p®* of () it
follows from Propositions 3 and 4 that £ > 2 and if k = 2 we do not need to
consider the case n; = 1. Therefore from Propositions 5-7, we can regard f as
always an increasing function in all variables. Thus, for any upper limit L, there is
clearly a systematic way of calculating for all \/7 < L, namely for each increasing
k (starting with k = 2) and each increasing choice of the »; (starting with n, =2
and n, = 1) we calculate for all p; <p, < - - - <p, in each case up until \/? >
L, recording all those » in which m = \/} is an integer.

Note that in the following table we have separated the solutions for odd and
even m since the odd m appear to have somewhat different properties. In fact, to
say m is an odd *-number is simply to say that m + 2 is prime and () has the sole
solution n = 2(m + 2) or that (*) has no solutions at all.

The following is the set of all nonstandard solutions of (x) for m < 1000. Note
that the solutions marked # are those guaranteed by Theorem 3.

oDD
m n m n m n m n
3 | 22.3 # 37 | 22.38 163 |23.3" s11 | 2%.3 4
s | 22.5 # yg | 23.52 179 |2.32.19 513 | 2%.5 #
7 | 2%.3 & 55 | 23.3° 185 |2%.3.19 577 | 2.3%.61
9 | 2%.5 # 61 | 22.3.11 ||2u9 |23.s3 639 | 2.5.112
13 | 2%.11 63 | 28.3 # |]2ss [28.3 & ||739 | 2%.3.131
15 | 2.3 # 65 | 25.5 # ||257 |28.5 # |le13 | 2.7.113
17 | 2.5 # 99 | 2.5.19 303 [2"%.109 877 | 2.13.67
19 | 23.32 127 | 27.3 # ||321 |2.5.61 897 | 27.113
23 | 2%.13 120 | 27.s # ||ss57 |22.13.19 ||e21 | 23.5.73
23 | 2.3.7 145 | 2%.s3 413 |22.3%2.29 ||9ss | 22.3%.67
31 | 2%.3 ¢ ||1s7 | 2%.113 437 |22.311 993 | 2%.7.23
33 | 255 # ||is9 | 2%.m1 yg7 |[23.3°

Note. The only values of m < 5000 for which (*) has a solution with k = 4 are:

m n
1744 3.5.7.41
3216 5.11.13.19
4516 3.5.19.41
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EVEN
m n m n m n m n
8 | 32.5 # 172 | 3%.7.11 vy | 52.7.13 6ou | 3.5.11°
10 | 32.7 # 176 | 3.5.31 432 | 7.17.23 708 | 7.23.29
26 | 52.11 # 226 | 53.43 438 | 192.79 728 | 3%.5 4
26 | 3%.5 4 228 | 7.11.17 yuo | 32.257 730 | 3%.7 4
28 | 3%.7 4 230 | 11%.71 wuo | 73,47 732 | 17%.181
4o | 3.5.7 240 | 5.13.17 450 | 5.7.53 74y | 13.19.31
ue | 52.23 2u2 | 3%z 456 | 5.19.23 760 | 3.7.101
ug | 72.13 # 2u2 | 355  # || w72 | 11%.149 762 | 11.17.37
62 | 7%.23 ouy | 357 4 || w7e | 53.97 796 | 3.5.139
78 | 72.31 246 | 5.7.29 510 | 72.199 804 | 5.11.67
8o | 3%.5 # 258 | 72.103 516 | 5.11.u43 g2y | 112.257
82 | 3%.29 288 | 7.13.19 530 | 232.u7 # || su2 | 29%.59 #
82 | 3%.7 # 296 | 52.137 530 | 3%.5.43 syl | 5.19.43
96 | 5.7.11 320 | 112.101 suo | 73.67 870 | 112.271
118 | 3%2.71 328 | 3.17.19 620 | 3%.11.13 || sou | 3.29.31
122 | 11%2.23 # || 3u2 | 72.112 626 | s*.11 # || 926 | s5%.ulg
126 | s3.11 # || 3u2 | 7%.13 # || eus | 13.17.29 || 926 | 32.52%.19
w2 | 3.7.19 354 | 52.163 660 | 11.19.29 || 932 | 7%.131
1y | 112,37 asg | 172.71 662 | 132.191 960 | 312.61 #
148 | 3.11.13 360 | 192.37 # || 690 | 132.199 990 | 23%.199
166 | 112.47 408 | 11.13.23 || 692 | 7.13.47 ||1000 | 33.7.29

Department of Mathematics and Statistics
University of Nebraska
Lincoln, Nebraska 68488

475-B Cook Drive
Redstone Arsenal, Alabama 35808

1. S. A. SERGUSOV, “On the problem of prime-twins,” Jaroslav. Gos. Ped. Inst. Ucen. Zap. Vyp. 82,
Anal. i Algebra, 1971, pp. 85-86. (Russian)



